
Polytechnic University of Turin
Master of Science in Computer Engineering

Database Management Systems’
first homework

Marco Micera
Academic Year 2017-2018

Contents

1 Algebraic query tree 2

2 Access path 3

3 Inner query JOIN order 3

4 JOIN and GROUP BY discussion 3

5 Indexes 6

6 GROUP BY push down 6
6.1 GROUP BY and JOIN rediscussion 8
6.2 Inner query JOIN order . 9

7 Access path with indexes 10

1

1 Algebraic query tree

2

2 Access path

• For the HOTEL table: Table access full

• For the HOTEL CHAIN table: Table access full + filter

• For the RESERVATION table: Table access full + filter

• For the COMMENT table: Table access full + filter

3 Inner query JOIN order

There are two possible orders by which the inner query double-JOIN can be
performed.

• Performing the JOIN operation between the RESERVATION table and the
HOTEL table first would involve respectively 3 · 108 and 106 tuples, and
then 3 · 108 and 104 tuples for the subsequent JOIN between the previous
result and the HOTEL CHAIN table

• By instead performing the JOIN operation between the HOTEL CHAIN table
and the HOTEL table first, there will be involved respectively just 104 and
106 tuples, and then 106 and 3 · 418 tuples for the second JOIN between

the previous result 1 and the RESERVATION table.

That is why the second order has been chosen.

4 JOIN and GROUP BY discussion

JOIN and GROUP BY operations have been numbered sequentially, as previously
shown in the algebraic query tree: hence, this list will follow that notation.

1 JOIN on HCID between HOTEL CHAIN and HOTEL

• Merge join

– No because both tables would need to be sorted, and they are
too big (more than 103 tuples each)

– There are no following operations that could benefit from this
table sorting

• Nested loop join

– Inner table: HOTEL CHAIN (smallest one)

– Outer table: HOTEL

– No because both tables are too big (more than 103 tuples each)

• Hash join

– Yes because both tables are big (more than 103 tuples each)

– It does not support any following GROUP BY operation

2 JOIN on HID between RESERVATION and 1

• Merge join

3

– No because both tables would need to be sorted, and they are
too big (more than 103 tuples each)

– There is a following GROUP BY operation that could benefit from
this table sorting, but an hash join is more efficient and it also
supports the following GROUP BY operation

• Nested loop join

– Inner table: 1

– Outer table: RESERVATION

– No because both tables are too big (more than 103 tuples each)

• Hash join

– Yes because both tables are too big (more than 103 tuples each)

– It supports the following GROUP BY operation

4

3 GROUP BY HID on 2

• No hash, already provided by the 2 nd JOIN operation

4 Anti-semi JOIN on HID between COMMENT and 3

• Merge join

– No because both tables would need to be sorted, and they are
too big (more than 103 tuples each)

– The following GROUP BY operation could not benefit from this
table sorting as the GROUP BY attribute (Website) is different
from this JOIN attribute (HID)

• Nested loop join

– Inner table: 3

– Outer table: COMMENT

– No because both tables are too big (more than 103 tuples each)

• Hash join

– Yes because both tables are too big (more than 103 tuples each)

– The following GROUP BY operation cannot benefit from this table
hashing as the GROUP BY attribute (Website) is different from
this JOIN attribute (HID)

5 GROUP BY Website on 4

• Hash, as this GROUP BY attribute (Website) is different from the pre-
vious JOIN attribute (HID)

5

5 Indexes

• For the HOTEL table:

– No index is needed for this query since all table rows must be accessed

• For the HOTEL CHAIN table:

– No index is needed for this query since the selection discards one row
only, hence forcing the Buffer Manager to basically read the whole
table

• For the RESERVATION table:

– Secondary B+-tree index on StartDate

∗ Index range scan

∗ Yes since selectivity is high enough (1
12 < 1

10)

– Secondary B+-tree or hash index on #People

∗ No since selectivity is too low (1
3)

– Secondary B+-tree composite index on StartDate and #People

∗ Yes since selectivity is high (1
12 · 1

3 = 1
36 < 1

10)

∗ However, no because a reduction factor of 1
36 is not so much

better than 1
12 , and the expensive index maintenance is not worth

the higher selectivity

• For the COMMENT table:

– Bitmap index on Vote

∗ Yes because it’s a low cardinality attribute

∗ Yes because selectivity is high enough (1
10)

6 GROUP BY push down

The first GROUP BY operation on HID (previously denoted with 3) can be
pushed down on the RESERVATION branch. The algebraic query tree becomes as
follows:

6

7

Pushing down the GROUP BY HID operation brings an advantage since the
JOIN on HID left branch’s cardinality drops from 3 · 108 to 9 · 105, making the
JOIN operation faster.
Note that since the order of GROUP BY and JOIN operations has changed, also
the numeration has, so the following JOIN and GROUP BY discussion will follow
this new notation.

6.1 GROUP BY and JOIN rediscussion

1 JOIN on HCID between HOTEL CHAIN and HOTEL

• Merge join

– No because both tables would need to be sorted, and they are
too big (more than 103 tuples each)

– There are no following operations that could benefit from this
table sorting

• Nested loop join

– Inner table: HOTEL CHAIN (smallest one)

– Outer table: HOTEL

– No because both tables are too big (more than 103 tuples each)

• Hash join

– Yes because both tables are big (more than 103 tuples each)

– It does not support any following GROUP BY operation

2 GROUP BY HID on RESERVATION

• Hash-based: sorting would be expensive since the table is too big
(3 · 108 rows)

3 JOIN on HID between 1 and 2

• Merge join

– No because both tables would need to be sorted, and they are
too big (more than 103 tuples each)

– It would help the following anti-semi JOIN 4 if it also would be
a merge one

• Nested loop join

– Inner table: 2

– Outer table: 1

– No because both tables are too big (more than 103 tuples each)

• Hash join

– Yes because both tables are too big (more than 103 tuples each)

8

4 Anti-semi JOIN on HID between COMMENT and 3

• Merge join

– No because both tables would need to be sorted, and they are
too big (more than 103 tuples each)

– The following GROUP BY operation could not benefit from this
table sorting as the GROUP BY attribute (Website) is different
from this JOIN attribute (HID)

• Nested loop join

– Inner table: 3

– Outer table: COMMENT

– No because both tables are too big (more than 103 tuples each)

• Hash join

– Yes because both tables are too big (more than 103 tuples each)

– The following GROUP BY operation cannot benefit from this table
hashing as the GROUP BY attribute (Website) is different from
this JOIN attribute (HID)

5 GROUP BY Website on 4

• Hash, as this GROUP BY attribute (Website) is different from the pre-
vious JOIN attribute (HID)

6.2 Inner query JOIN order

Having pushed down the GROUP BY operation in the algebraic query tree, it is
now necessary to re-evaluate the inner query JOIN order in order to obtain the
best overall performance.
Two options, as before:

• Performing the JOIN operation between the HOTEL CHAIN table and the
HOTEL table first would involve respectively 104 and 106 tuples, and then
106 and 9 · 105 tuples for the subsequent JOIN between the previous result
and the RESERVATION table

• By instead performing the JOIN operation between the RESERVATION table
and the HOTEL table first, there will be involved respectively just 9 · 105

and 106 tuples, and then 9·105 and 104 tuples for the second JOIN between
the previous result and the HOTEL CHAIN table.

It is now clear why the inner query JOIN order has been changed according
to the second point of this list.
The modified section of the algebraic query tree is reported in the next page.

9

7 Access path with indexes

In order to exploit the secondary physical structures introduced in section 5,
access paths have been changed in the following way:

• For the HOTEL table: Table access full

• For the HOTEL CHAIN table: Table access full + filter

• For the RESERVATION table: Index range scan (on StartDate) + access
by RowID

• For the COMMENT table: Bitmap index scan + access by RowID

10

